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Abstract

How to best design a communication architecture is becoming in-
creasingly important for evolving autonomous multiagent systems. Di-
rectional reception of signals, a design feature of communication that
appears in most animals, is present in only some existing artificial com-
munication systems. This paper hypothesizes that such directional re-
ception benefits the evolution of communicating autonomous agents be-
cause it simplifies the language required to express positional informa-
tion, which is critical to solving many group coordination tasks. This
hypothesis is tested by comparing the evolutionary performance of sev-
eral alternative communication architectures (both directional and non-
directional) in a multiagent foraging domain designed to require a basic
“come here” type of signal for the optimal solution. Results indicate that
directional reception is a key ingredient in the evolutionary tractability
of effective communication. Furthermore, the real world viability of di-
rectional communication is demonstrated through the successful transfer
of the best evolved controllers to real robots. The conclusion is that
directional reception is an important language feature to consider when
designing communication architectures for more complicated tasks in the
future.
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1 Introduction

Because there exists a substantial class of tasks that require more than one agent
to solve [26], evolving multiagent robot teams has inevitably attracted significant
interest. Due to the limitations inherent in centralized control systems [17],
a popular alternative is to evolve controllers for multiple autonomous agents
that confront the challenge of group coordination via local interactions. While
some researchers have built controllers for non-communicating autonomous
agents [4, 5], communication can potentially improve group coordination through
sharing information about the sensed environment [16] or agent states [10]. The
question then becomes how to design an effective communication scheme. While
there are many important design features of communication systems to consider
[13], this paper focuses on one of the most basic features: directional reception
of signals. When this feature is present, agents can perceive the direction from
which incoming signals originate.

Interestingly, both communication systems without directional reception
[3, 16, 29] and with directional reception [7, 8, 18, 31] have been proposed; both
types of communication systems achieve good results in their respective domains.
Yet despite the interest in both communication schemes with and without
directional reception, few empirical studies have investigated the importance
of directionality. The hypothesis in this paper is that directional reception is
beneficial to the evolution of communicating autonomous agents. Consider the
following thought experiment: Imagine that you are trying to help a friend
who is on the other side of a crowded room to come to your location. If you
can only communicate through text messages, the message you send may be
similar to “come to the southwest corner of the room, near the grey statue,”
or, “turn 120 degrees to your left and walk towards me.” However, by shouting
across the room, you can simply say “come here.” The reason for the reduction
in message complexity is that the positional information that is explicit in
the text messages is implicit in the verbal message because humans benefit
from directional reception of auditory signals. Similarly, agents equipped with
directional reception should be able to communicate with less complex language
than those without directional reception, which is beneficial for evolved controllers
in physical environments because simpler languages are easier to evolve.

This hypothesis is validated by an experiment comparing the evolution-
ary performance of directional and non-directional communication schemes in
a multiagent foraging domain designed to require a “come here” type of sig-
nal. Controllers in the experiment are evolved with the HyperNEAT algorithm
for evolving large-scale ANNs [11, 22], which has been successfully applied to
multiagent domains in the past [3–5]. Unlike many neuroevolution methods,
HyperNEAT can be informed by geometric information in the domain, mak-
ing it an ideal platform for testing directional communication. Experimental
results support the hypothesis that directional communication schemes are more
evolutionarily tractable than their non-directional counterparts, suggesting that
directional reception is important for enabling the evolution of group coordi-
nation tasks because it redirects evolutionary effort from learning a complex
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language to learning task-critical behaviors. Finally, the practical value of the
evolved controllers is demonstrated by transferring the best teams to real-world
Khepera III robots.

It is important to note that while the main hypothesis may be intuitive,
many robot coordination tasks in the past have lacked such directional reception
[3, 16, 29]. Thus this paper makes a practical contribution by serving as a
reminder that directionality is often more important than linguistic complexity
when contemplating the setup of future experiments in evolved coordination.

2 Background

This section reviews prior work in training communicating agents and summarizes
the HyperNEAT neuroevolution algorithm featured in the experiments presented
in this paper.

2.1 Communication in Multiagent Teams

Within the field of evolutionary computation, communication among agents has
been studied from several perspectives. One of the most popular questions is how
natural communication may have emerged under evolutionary pressure; Wagner
et al. [28] provide a detailed review of past work in this area on the emergence of
communication. One aspect of communication that is often present in simulated
models but is rarely the subject of empirical testing is directional reception,
which is the ability of an agent, upon hearing a message, to sense the direction
of the message’s source. Directional reception is one of the 13 design features
of animal communication identified by Hockett [13] and is present in even the
least advanced communicating mammals. Perhaps the reason its importance
is not often tested is that when tracing the evolution of humans back to land
mammals, directional reception co-occurs with communication as an immediate
implication simply of having ears.

Communication is also often important for agents in a cooperative multiagent
team. One situation in which agents benefit from communication is when each
agent senses only a fraction of the observable state of the environment. In
such tasks, communication facilitates sharing information among team members
to increase the amount of environmental context available to each agent [16].
Communication may also be necessary in tasks in which agents have limited
information about the state of other agents on the team, such as when an agent
requires the assistance of other agents to solve a subgoal [10].

Realizing the importance of communication in solving cooperative tasks,
researchers developing evolved or learned controllers for cooperative teams of
robots have experimented with different forms of communication, many of which
include a form of directional reception. For example, Yong and Mikkulainen [31]
developed neural controllers that received as input the exact positions of all
team members. Marocco and Nolfi [18] developed simulated robots with a single
communication output that produces signals whose intensity and direction is
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perceived by team members through directional pie-slice sensors. Di Paolo [7]
developed robots that could “speak” using simulated sound waves and who could
thereby infer the relative position of a speaker through a set of ears positioned on
opposite sides of the body. Floreano et al. [8] evolved physical robot controllers
that communicate their positions through light.

Considerable effort has also been devoted to developing communicating agents
that are not aware of the relative position of the speaker. In pioneering work
on the evolution of communication, Werner and Dyer [29] evolved agents that
communicate via three-bit binary signals to solve a task in which stationary
“female” agents must guide blind “male” agents to their position on a discretized
two-dimensional grid. Jim and Giles [16] evolved teams of agents to solve a
discrete predator-prey task; each agent in the domain reads and writes bit strings
to a shared message board. In a recent work, D’Ambrosio et al. [3] solved a
multiagent synchronization task by evolving a neural controller that features
direct neural connections between agents. In each of Werner and Dyer [29], Jim
and Giles [16], and D’Ambrosio et al. [3], positional information is critically
important to solving the task even though it is not explicitly included in the
communication scheme. The binary-string languages that subsequently emerged
in Werner and Dyer [29] and Jim and Giles [16] attached positional information
to certain “words” in the language. D’Ambrosio et al. [3] in contrast achieved
a solution by extracting positional information from assumptions about the
starting positions and orientations of the agents.

This paper advances the hypothesis that knowing the relative location of
a speaker is often critically important in solving group coordination tasks and
that it is beneficial to include such information implicitly in the communication
scheme so that evolutionary effort need not be expended incorporating it into the
emergent language. A recent neuroevolution technique called HyperNEAT [11,
22] easily facilitates the evolution of agents with a position-aware communication
scheme because HyperNEAT can take into account geometric information about
the domain (such as the spatial relationship between an agent’s vision or audition
sensors), making it a good platform for testing this hypothesis. The following
sections review the HyperNEAT approach, which is applied in the experiments
in this paper.

2.2 Neuroevolution of Augmenting Topologies

The HyperNEAT approach is itself an extension of the original NEAT (Neu-
roevolution of Augmenting Topologies) algorithm that evolves increasingly large
ANNs [23, 25]. NEAT starts with a population of simple networks that then
increase in complexity over generations by adding new nodes and connections
through mutations. By evolving ANNs in this way, the topology of the network
does not need to be known a priori; NEAT searches through increasingly com-
plex networks to find a suitable level of complexity. Because it starts simply
and gradually adds complexity, it tends to find a solution network close to
the minimal necessary size. However, as explained in the next section, the
direct representation of nodes and connections in the NEAT genome cannot
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scale up to larger networks that can take advantage of domain geometry. For a
complete overview of NEAT, see Stanley and Miikkulainen [23] or Stanley and
Miikkulainen [25].

2.3 HyperNEAT

Like NEAT, many neuroevolution methods are directly encoded, which means
each component of the phenotype is encoded by a single gene, making the
discovery of repeating motifs expensive and improbable [30]. Therefore, indirect
encodings [1, 2, 14, 19, 24] have become a growing area of interest in evolutionary
computation.

One such indirect encoding designed explicitly for neural networks is in
Hypercube-based NEAT (HyperNEAT) [11, 22], which is itself an indirect exten-
sion of the directly-encoded NEAT approach [23, 25] reviewed in the previous
section. This section briefly reviews HyperNEAT; a complete introduction can
be found in Stanley et al. [22] and Gauci and Stanley [11]. Rather than express-
ing connection weights as independent parameters in the genome, HyperNEAT
allows them to vary across the phenotype in a regular pattern through an indirect
encoding called a compositional pattern producing network (CPPN; [21]), which
is like an ANN, but with specially-chosen activation functions.

CPPNs in HyperNEAT encode the connectivity patterns of ANNs as a
function of geometry. That is, if an ANN’s nodes are embedded in a geometry,
i.e. assigned coordinates within a space, then it is possible to represent its
connectivity as a single evolved function of such coordinates. In effect the CPPN
paints a pattern of weights across the geometry of a neural network. Because the
CPPN encoding is itself a network, it is evolved in HyperNEAT by the NEAT
algorithm, which is designed to evolve networks of increasing complexity. To
understand why this approach is promising, consider that a natural organism’s
brain is physically embedded within a three-dimensional geometric space, and
that such embedding heavily constrains and influences the brain’s connectivity.
Topographic maps (i.e. ordered projections of sensory or effector systems such
as the retina or musculature) in natural brains preserve geometric relationships
between high-dimensional sensor and effector fields [15, 27]. In other words,
there is important information implicit in geometry that can only be exploited
by an encoding informed by such geometry.

In particular, geometric regularities such as symmetry or repetition are
pervasive throughout the connectivity of natural brains. To similarly achieve
such regularities, CPPNs exploit activation functions that induce regularities
in HyperNEAT networks. The general idea is that a CPPN takes as input the
geometric coordinates of two nodes embedded in the substrate, i.e. an ANN
situated in a particular geometry, and outputs the weight of the connection
between those two nodes (figure 1). In this way, a Gaussian activation function
by virtue of its symmetry can induce symmetric connectivity and a sine function
can induce networks with repeated elements. Note that because the size of the
CPPN is decoupled from the size of the substrate, HyperNEAT can compactly
encode the connectivity of an arbitrarily large substrate with a single CPPN.
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Figure 1: HyperNEAT example. An example substrate (left) for a simple
ANN contains ten neurons that have been assigned (x, y) coordinates. The
weight of every connection specified in the substrate is determined by the evolved
CPPN (right): (1) The coordinates of the source (x1, y1) and target (x2, y2)
neurons are input into the CPPN, (2) the CPPN is activated, and (3) the weight
w of the connection being queried is set to the CPPN’s output. CPPN activation
functions in this paper can be sigmoid (Sig), Gaussian (G), linear (L), or sine
(Sin).

Additionally, HyperNEAT can evolve controllers for teams of agents. This
multiagent HyperNEAT algorithm was first introduced by D’Ambrosio and
Stanley [5], D’Ambrosio et al. [4], and D’Ambrosio and Stanley [6]. It can
be used to evolve both homogeneous and heterogeneous teams; however, the
experiments in this paper only necessitate the homogeneous case. Controllers for
homogeneous teams are created by evolving a single controller that is duplicated
for each agent on the team.

3 Experiment

Each of the communication schemes reviewed in Section 2.1 that succeed without
directional reception share a common feature: the domain in which they are
applied is simplified. For example, the simulated worlds in Werner and Dyer [29]
and Jim and Giles [16] consist of discrete two-dimensional grids, and while
the world in D’Ambrosio et al. [3] is continuous, agents are restricted to only
forward-backward movement, effectively narrowing actions to one dimension.
To test the hypothesis that non-directional communication schemes require
more evolutionary effort than their directional counterparts, a more challenging
domain is proposed that takes place in a continuous two-dimensional world.

A team of five agents is placed in a large rectangular room bounded on all
four sides by walls but otherwise free of obstructions. Agents must collect the
greatest number of food items possible from the room within a time limit. Only
one food item is present in the room at a given time; whenever one is collected,
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a new one spawns randomly somewhere in the room. The key mechanism
encouraging communication is that food items are not collected until they are
touched by three agents simultaneously. While it is possible for all three agents
to arrive at a food item through random wandering (without communication),
the second and third agents can find the food much faster if the first agent
to find it signals its location. The type of communication that is required for
the optimal behavior is thus relatively unsophisticated: agents must produce a
come here signal upon discovering a food item. However, this type of signal is
significantly more difficult to produce when directional reception is not embedded
in the communication architecture because extra “words” must be discovered
to describe the location of “here” (a concept that is implicit within directional
reception). While this domain is relatively simple, the underlying dynamic
of rallying a group of cooperating agents to salient locations in real time is
fundamental to a range of important real world tasks such as rescue, patrol,
and retrieval tasks. In this way, this experiment helps to highlight the potential
importance of directional communication across a range of real-world problems.

In addition to a control scheme with no communication (NoCom), three
different communication schemes are tested to determine the extent to which
directional reception is important in solving this group foraging task. In the
first scheme, DirCom, agents can emit signals on one channel (which can range
from 0.0 to 1.0) and can hear signals coming from one of ten directions (equally
spaced around the agent) via an array of ten pie-slice sensors. In the second
communication scheme, OneBit, agents can also emit signals on only one channel,
but cannot hear signals directionally. Instead, agents have five communication
inputs for hearing signals from each of the five agents on the team. The input
for sensing an agent’s own signals is disabled for consistency with the DirCom
scheme, in which agents cannot hear themselves either. The final communication
scheme, FiveBit, is the same as OneBit except that agents can emit signals
on five channels and have an array of 25 communication inputs (one for each
channel on each agent). The extra “bits” can potentially make possible a more
complex language capable of expressing the positional information necessary to
compensate for a lack of directional reception. However, whether such a language
is evolutionarily tractable will be determined experimentally.

Individual agents are equipped with several arrays of pie-slice sensors for
the various senses that serve as inputs into a HyperNEAT-evolved ANN. The
HyperNEAT substrate that serves as the basis for all the variant setups is shown
in figure 2. This kind of multi-spatial substrate is shown effective for tasks with
multiple modalities in Pugh and Stanley [20]. Agents sense the location of food
items within a maximum radius of 100 units with a set of five equal-size pie-slice
sensors that span the frontal 180 degrees of vision. Similarly, agents detect walls
with a set of five 100-unit rangefinders arranged across the front of each agent in
36 degree intervals. Each agent also detects the location of other agents with a
set of ten unlimited-range1 pie-slice sensors that surround the agent. Each agent

1Activation of the friend sensors that detect other agents is floored at 20% if sensing an
agent more than 500 units away.
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has the ability to move forward and to turn left or right (a set of three output
neurons control the movement: left, forward, and right, where the direction and
magnitude of each turn is decided by the difference between the left and right
turn outputs).

DirCom, OneBit, and FiveBit agents are identical in every way except for
their communication scheme, which differ as follows. DirCom (figure 3a) and
OneBit (figure 3b) agents each have a single output neuron for sending simple
communication signals, while FiveBit (figure 3c) has a set of five output neurons
for sending more complex signals. DirCom agents have a set of ten input
neurons for receiving communication signals (figure 4a), one for each pie-slice in
their 360 degree non-overlapping array. OneBit agents have a set of five input
neurons for receiving communication signals (figure 4b), one for each agent on the
team (one of which is never activated because agents cannot hear themselves).
FiveBit agents have a set of 25 input neurons for receiving communication
signals (figure 4c), five for each of five agents on the team (five of which are
never activated). Recall that because HyperNEAT is an indirect encoding, the
dimensionality of the inputs is not an obstacle to effective learning [22].

The room is 1,000 by 900 units, and the five agents are initially arranged in
a horizontal line in the center of the room spaced 100 units apart. Food items
spawn randomly around the room, not closer than 40 units from a wall. During
evolution, team performance is averaged over 20 trials to mitigate the evaluation
noise caused by randomized food item spawn points. Each trial, teams are given
2,000 ticks of simulation time to collect as many food items as possible, up to a
maximum of ten food items. Team fitness on a particular trial is determined
by the number of food items seen, the number collected, and the time at which
each was collected. More specifically, each food item is worth a maximum of 100
points, 10 of which are awarded when a single agent comes within range (the
food is “seen”), 40 of which are awarded when three agents come within range
(thus collecting the food), and 50 of which are time dependent (50 points are
awarded if the food is collected on the first tick of simulation, diminishing to 0
points awarded if the food is collected on the last tick). The time component is
included to provide a smoother fitness gradient for evolution to follow.

Evolution is run for 1,000 generations, by which time fitness inevitably stops
improving. The training phase consists of 20 runs of evolution for each of the
three communication schemes, after which the champions are tested according
to a more stable metric: Testing performance is determined by the raw number
of food items collected in 5,000 time ticks, averaged over 10,000 trials. During
testing, there is no artificial limit of 10 food items, although there are practical
limits due to the time it takes agents to travel across the room2.

Finally, to highlight the practical value of effective communication, the best
performing teams are implemented on real-world Khepera III robots. In the
real world implementation, several sensor types are implemented by a central
station that reads each agent’s position and orientation information on every tick

2Agents move at a maximum rate of 5 units per tick and have a maximum turn rate of 36
degrees per tick.
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Figure 2: HyperNEAT substrate (all communication schemes). Each
input and output modality and each hidden layer is placed on its own plane
within the substrate, following the multi-spatial substrate configuration described
in Pugh and Stanley [20]. The substrate is strictly feedforward: Each input
modality feeds into a dedicated “level 1” hidden layer, all level 1 hidden layers
feed into a common “level 2” hidden layer, and all hidden layers (level 1 as well
as level 2) feed into all outputs. Individual neural connections are omitted for
clarity. Instead, arrows indicate the existence of neural connections between two
planes. Planes shown as connected are potentially fully connected (all neurons
on the first plane are queried by HyperNEAT for connections to all neurons on
the second plane). Communication input and output planes vary depending
on communication scheme; see figure 3 for output planes and figure 4 for input
planes.
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(a) DirCom (b) OneBit (c) FiveBit

Figure 3: Substrate: communication output planes. The number of
neurons on the communication output plane corresponds to the size of the signal
vector sent to all other agents on the team on each tick: one for DirCom (a) and
OneBit (b), and five for FiveBit (c).

via odometry on their wheel encoders. This information is synthesized to yield
communication sensors, friend vision, and target vision. Hardware IR sensors
serve as the wall sensors. While in practice positional information in the real
world may not always be possible to compute through a central computing node,
it is important to note that this setup approximates other real world setups that
would convey similar information, such as true hardware-based emitters [8] or
decentralized mutual localization techniques [9].

It is also important to note that in the real world the IR sensors also detect the
presence of other robots as well as the target points (plastic cups), causing those
entities to be treated like walls. This ambiguity is contrary to the case during
evolution where wall sensors only activate when in range of a wall. To partially
mitigate this potential discrepancy, walls in the real world are covered with
retroreflective tape while robots and target points are not. Thus agents perceive
a strong activation when seeing walls and a comparatively weak activation when
seeing other solid objects in the room. The evolved policies are robust enough
to work in the real world despite any remaining differences.

Because HyperNEAT differs from original NEAT only in its set of activation
functions, it uses the same parameters [23]. The experiment was run with a
modified version of the public domain SharpNEAT package [12]. The size of the
population was 500 with 20% elitism. Sexual offspring (50%) did not undergo
mutation. Asexual offspring (50%) had 0.96 probability of link weight mutation,
0.03 chance of link addition, and 0.01 chance of node addition. The coefficients
for determining species similarity were 1.0 for nodes and connections and 0.1 for
weights. The available CPPN activation functions were sigmoid, Gaussian, linear,
and sine, all with equal probability of being added to the CPPN. Parameter
settings are based on standard SharpNEAT defaults and prior reported settings
for NEAT [23, 25]. They were found to be robust to moderate variation through
preliminary experimentation.
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Figure 4: Substrate: communication input planes. Communication input
for DirCom (a) consists of two sets of five neurons corresponding to the front and
rear pie-slice sensors. Each neuron in the communication input plane for OneBit
(b) corresponds to an agent on the team and is activated when detecting signals
from that agent. The communication input plane for FiveBit (c) consists of a
5× 5 grid arranged as five horizontal groups. Each horizontal group corresponds
to an agent on the team, and each neuron within a group corresponds to a
different communication channel.

4 Results

For each communication scheme, each of the best performing genomes found after
1,000 generations of evolution (one for each of 20 runs) is evaluated according to
the testing metric described in the previous section. The test performance for
each communication architecture, averaged over the 20 champions, is presented
in figure 5. The directional communication scheme significantly outperforms
all others (p < 0.05; Student’s t-test), while there is no significant difference
between the OneBit, FiveBit, and NoCom architectures. The best performing
NoCom champion collects 12.3 food on average during testing. Nine out of the
20 DirCom champions pass a success threshold of collecting more than 105%
of the food collected by the best NoCom champion, while the number of such
successes for OneBit and FiveBit are zero and one, respectively.

The best performing NoCom teams exhibit surprisingly effective exploratory
behavior. The very best consists of a single agent closely following the walls
and corners of the arena while the remaining four agents lag behind seeking the
leading agent and at the same time checking the interior of the room. If food is
discovered in the interior, the swarm of agents quickly collects it, and if food
is discovered near a wall, the wall-exploring agent stops at it and the swarm
of agents is able to catch up and thus collect the food in a reasonable time.
However, this highly coordinated behavior is rare; most NoCom teams achieve
scores closer to 10.0 through random wandering. The best OneBit teams exhibit
a similar style of coordination as the best NoCom team, with scores of 12.7 and
12.6. All of the OneBit teams either send chaotic signals at all times, usually
with no discernable purpose (signals changed little if at all when agents were in
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Figure 5: Test performance. The testing performance of a single run is
determined by the average number of food items collected over 10,000 trials by
the team with the highest training performance. Results for each communication
scheme are averaged over 20 runs. Error bars depict a 95% confidence interval.
The DirCom scheme performs significantly better than the other schemes (p <
0.05; Student’s t-test).

range of a target point or wall), or else do not send signals at all. In contrast,
the best FiveBit team produces a rudimentary “come here” signal that allows it
to achieve good results, with a score of 14.4. Agents on this team spread out and
explore the map individually. When an agent finds the food, it sends a signal
that causes all other agents to change behavior and begin to seek nearby agents.
This inevitably causes the agents to capture the food, although it is clear that
they do not know the location of the agent sending the signal because often all
four of the remaining agents will join up before moving to the fifth (and thus
the food). While this strategy is effective, that it was only achieved in one of
the FiveBit runs suggests the difficulty of discovering it.

In contrast to the non-directional schemes, half of the DirCom teams learned
to produce a “come here” signal upon discovering the food. The testing perfor-
mance of these teams varied (from 13.0 to 19.3) according to the effectiveness of
non-communicative behaviors such as exploration and the reliability of turning
towards a detected food item without moving past it (and thus out of range).
The best DirCom team, with a test score of 19.3, combines “come here” signal-
ing with efficient exploratory behaviors (agents tend to spread out as much as
possible).
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Figure 6: Real world implementation. In this example, the robots explore
the arena by moving forward from their starting positions. The third robot finds
the target point (top) and signals its location to the other robots who then begin
moving towards it (bottom).

The five best performing DirCom teams were transferred to real Khepera III
robots and placed in an open arena containing a single food item. Transferred
teams demonstrated effective group coordination (figure 6), despite significant
differences between the real world and the simulated world (e.g. robots can
collide with each other in the real world, while they cannot do so in simulation).
Real world teams are tested with varying team sizes of five, four, and three robots
without losing the ability to solve the task. Videos of some of the transferred
teams can be found at http://tinyurl.com/DirComVideo.

5 Discussion

The results indicate that the communication scheme that includes directional
reception is able to solve the task more efficiently than those schemes without
directional reception. In fact, only one out of 40 teams across both non-directional
communication schemes achieves a level of performance unreachable by non-
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communicating teams. By comparison, almost half of the teams with directional
reception achieve such performance. This result demonstrates that even though
it is possible to evolve effective communication without directional reception,
doing so is less evolutionarily tractable than when directional reception is present
in the system.

Messages in a system without directional reception must express directional-
ity through a complex system of “words” that each contain different positional
information. These words must be invented independently, and they may have
little or no benefit until several have already been invented. This problem is diffi-
cult for evolutionary algorithms because there may exist no path of increasingly
fit stepping stones to the discovery of the final working language. Directional
reception alleviates this problem by incorporating positional information into the
communication architecture itself so that agents automatically learn the entire
vocabulary of positional information as soon as a single word is invented. In this
way, effective language is more evolutionarily tractable because directionality
can be discovered in a single step.

Directional reception can be implemented in the real world in a number of
ways. For example, it is possible to perceive the direction of signals sent via
sound or light [8]. However, such approaches may not be robust to environmental
factors such as bright rooms or poor acoustics. More promisingly, directional
communication can be simulated if robots have an accurate means of localization.
The real world experiment in this paper demonstrates a centralized localiza-
tion approach based on wheel encoder odometry that facilitates the real world
implementation. However, stronger methods exist, such as the decentralized
localization proposed by Franchi et al. [9].

Overall, the significant advantage of directional communication over non-
directional approaches in the experiment points to the importance of at least
considering providing directional sensitivity when first formulating multiagent
architectures for future robot coordination problems. With realistic real world
options for such directional sensing available, such schemes merit serious consid-
eration for complex multiagent tasks.

6 Conclusions

This paper presented an empirical study of directional communication for the
evolution of neural controllers applied to a group coordination task. A directional
communication scheme was compared to two non-directional schemes with
different potentials for message complexity, as well as to a scheme in which
communication is disabled. The results indicate that directional communication
is more evolutionarily tractable than non-directional approaches because it
eliminates the need to discover a complex language to express the positional
information that is crucial to optimally solving the task. The real world viability
of the directional communication scheme was demonstrated by successfully
transferring the best evolved neural controllers to Khepera III robots. Thus
this paper serves as a reminder of the importance of directional reception and
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suggests that it is an important language feature to consider when designing
communication architectures for more complicated tasks in the future.
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